3.6.90 \(\int \frac {1+x^3}{(1-x^4) \sqrt [4]{1+x^4}} \, dx\) [590]

3.6.90.1 Optimal result
3.6.90.2 Mathematica [C] (verified)
3.6.90.3 Rubi [A] (verified)
3.6.90.4 Maple [F(-1)]
3.6.90.5 Fricas [F(-2)]
3.6.90.6 Sympy [F]
3.6.90.7 Maxima [F]
3.6.90.8 Giac [F]
3.6.90.9 Mupad [F(-1)]

3.6.90.1 Optimal result

Integrand size = 24, antiderivative size = 103 \[ \int \frac {1+x^3}{\left (1-x^4\right ) \sqrt [4]{1+x^4}} \, dx=\frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^4}}\right )}{2 \sqrt [4]{2}}-\frac {\arctan \left (\frac {\sqrt [4]{1+x^4}}{\sqrt [4]{2}}\right )}{2 \sqrt [4]{2}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^4}}\right )}{2 \sqrt [4]{2}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{1+x^4}}{\sqrt [4]{2}}\right )}{2 \sqrt [4]{2}} \]

output
1/4*arctan(2^(1/4)*x/(x^4+1)^(1/4))*2^(3/4)-1/4*arctan(1/2*(x^4+1)^(1/4)*2 
^(3/4))*2^(3/4)+1/4*arctanh(2^(1/4)*x/(x^4+1)^(1/4))*2^(3/4)+1/4*arctanh(1 
/2*(x^4+1)^(1/4)*2^(3/4))*2^(3/4)
 
3.6.90.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 6 vs. order 3 in optimal.

Time = 10.54 (sec) , antiderivative size = 93, normalized size of antiderivative = 0.90 \[ \int \frac {1+x^3}{\left (1-x^4\right ) \sqrt [4]{1+x^4}} \, dx=\frac {1}{4} x^4 \operatorname {AppellF1}\left (1,\frac {1}{4},1,2,-x^4,x^4\right )+\frac {2 \arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^4}}\right )-\log \left (1-\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^4}}\right )+\log \left (1+\frac {\sqrt [4]{2} x}{\sqrt [4]{1+x^4}}\right )}{4 \sqrt [4]{2}} \]

input
Integrate[(1 + x^3)/((1 - x^4)*(1 + x^4)^(1/4)),x]
 
output
(x^4*AppellF1[1, 1/4, 1, 2, -x^4, x^4])/4 + (2*ArcTan[(2^(1/4)*x)/(1 + x^4 
)^(1/4)] - Log[1 - (2^(1/4)*x)/(1 + x^4)^(1/4)] + Log[1 + (2^(1/4)*x)/(1 + 
 x^4)^(1/4)])/(4*2^(1/4))
 
3.6.90.3 Rubi [A] (verified)

Time = 0.35 (sec) , antiderivative size = 103, normalized size of antiderivative = 1.00, number of steps used = 11, number of rules used = 10, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.417, Rules used = {2438, 902, 756, 216, 219, 946, 73, 827, 216, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^3+1}{\left (1-x^4\right ) \sqrt [4]{x^4+1}} \, dx\)

\(\Big \downarrow \) 2438

\(\displaystyle \int \frac {1}{\left (1-x^4\right ) \sqrt [4]{x^4+1}}dx+\int \frac {x^3}{\left (1-x^4\right ) \sqrt [4]{x^4+1}}dx\)

\(\Big \downarrow \) 902

\(\displaystyle \int \frac {1}{1-\frac {2 x^4}{x^4+1}}d\frac {x}{\sqrt [4]{x^4+1}}+\int \frac {x^3}{\left (1-x^4\right ) \sqrt [4]{x^4+1}}dx\)

\(\Big \downarrow \) 756

\(\displaystyle \int \frac {x^3}{\left (1-x^4\right ) \sqrt [4]{x^4+1}}dx+\frac {1}{2} \int \frac {1}{1-\frac {\sqrt {2} x^2}{\sqrt {x^4+1}}}d\frac {x}{\sqrt [4]{x^4+1}}+\frac {1}{2} \int \frac {1}{\frac {\sqrt {2} x^2}{\sqrt {x^4+1}}+1}d\frac {x}{\sqrt [4]{x^4+1}}\)

\(\Big \downarrow \) 216

\(\displaystyle \int \frac {x^3}{\left (1-x^4\right ) \sqrt [4]{x^4+1}}dx+\frac {1}{2} \int \frac {1}{1-\frac {\sqrt {2} x^2}{\sqrt {x^4+1}}}d\frac {x}{\sqrt [4]{x^4+1}}+\frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \int \frac {x^3}{\left (1-x^4\right ) \sqrt [4]{x^4+1}}dx+\frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}\)

\(\Big \downarrow \) 946

\(\displaystyle \frac {1}{4} \int \frac {1}{\left (1-x^4\right ) \sqrt [4]{x^4+1}}dx^4+\frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}\)

\(\Big \downarrow \) 73

\(\displaystyle \int \frac {x^8}{2-x^{16}}d\sqrt [4]{x^4+1}+\frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}\)

\(\Big \downarrow \) 827

\(\displaystyle \frac {1}{2} \int \frac {1}{\sqrt {2}-x^8}d\sqrt [4]{x^4+1}-\frac {1}{2} \int \frac {1}{x^8+\sqrt {2}}d\sqrt [4]{x^4+1}+\frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}\)

\(\Big \downarrow \) 216

\(\displaystyle \frac {1}{2} \int \frac {1}{\sqrt {2}-x^8}d\sqrt [4]{x^4+1}+\frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}-\frac {\arctan \left (\frac {\sqrt [4]{x^4+1}}{\sqrt [4]{2}}\right )}{2 \sqrt [4]{2}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}\)

\(\Big \downarrow \) 219

\(\displaystyle \frac {\arctan \left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}-\frac {\arctan \left (\frac {\sqrt [4]{x^4+1}}{\sqrt [4]{2}}\right )}{2 \sqrt [4]{2}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} x}{\sqrt [4]{x^4+1}}\right )}{2 \sqrt [4]{2}}+\frac {\text {arctanh}\left (\frac {\sqrt [4]{x^4+1}}{\sqrt [4]{2}}\right )}{2 \sqrt [4]{2}}\)

input
Int[(1 + x^3)/((1 - x^4)*(1 + x^4)^(1/4)),x]
 
output
ArcTan[(2^(1/4)*x)/(1 + x^4)^(1/4)]/(2*2^(1/4)) - ArcTan[(1 + x^4)^(1/4)/2 
^(1/4)]/(2*2^(1/4)) + ArcTanh[(2^(1/4)*x)/(1 + x^4)^(1/4)]/(2*2^(1/4)) + A 
rcTanh[(1 + x^4)^(1/4)/2^(1/4)]/(2*2^(1/4))
 

3.6.90.3.1 Defintions of rubi rules used

rule 73
Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[ 
{p = Denominator[m]}, Simp[p/b   Subst[Int[x^(p*(m + 1) - 1)*(c - a*(d/b) + 
 d*(x^p/b))^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] && Lt 
Q[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntL 
inearQ[a, b, c, d, m, n, x]
 

rule 216
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[b, 2]))*A 
rcTan[Rt[b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && PosQ[a/b] && (GtQ[a 
, 0] || GtQ[b, 0])
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 756
Int[((a_) + (b_.)*(x_)^4)^(-1), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 2 
]], s = Denominator[Rt[-a/b, 2]]}, Simp[r/(2*a)   Int[1/(r - s*x^2), x], x] 
 + Simp[r/(2*a)   Int[1/(r + s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ[a 
/b, 0]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 902
Int[((a_) + (b_.)*(x_)^(n_))^(p_)/((c_) + (d_.)*(x_)^(n_)), x_Symbol] :> Su 
bst[Int[1/(c - (b*c - a*d)*x^n), x], x, x/(a + b*x^n)^(1/n)] /; FreeQ[{a, b 
, c, d}, x] && NeQ[b*c - a*d, 0] && EqQ[n*p + 1, 0] && IntegerQ[n]
 

rule 946
Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_. 
), x_Symbol] :> Simp[1/n   Subst[Int[(a + b*x)^p*(c + d*x)^q, x], x, x^n], 
x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m - n 
+ 1, 0]
 

rule 2438
Int[((A_) + (B_.)*(x_)^(m_.))*((a_.) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.) 
*(x_)^(n_))^(q_.), x_Symbol] :> Simp[A   Int[(a + b*x^n)^p*(c + d*x^n)^q, x 
], x] + Simp[B   Int[x^m*(a + b*x^n)^p*(c + d*x^n)^q, x], x] /; FreeQ[{a, b 
, c, d, A, B, m, n, p, q}, x] && NeQ[b*c - a*d, 0] && EqQ[m - n + 1, 0]
 
3.6.90.4 Maple [F(-1)]

Timed out.

\[\int \frac {x^{3}+1}{\left (-x^{4}+1\right ) \left (x^{4}+1\right )^{\frac {1}{4}}}d x\]

input
int((x^3+1)/(-x^4+1)/(x^4+1)^(1/4),x)
 
output
int((x^3+1)/(-x^4+1)/(x^4+1)^(1/4),x)
 
3.6.90.5 Fricas [F(-2)]

Exception generated. \[ \int \frac {1+x^3}{\left (1-x^4\right ) \sqrt [4]{1+x^4}} \, dx=\text {Exception raised: TypeError} \]

input
integrate((x^3+1)/(-x^4+1)/(x^4+1)^(1/4),x, algorithm="fricas")
 
output
Exception raised: TypeError >>  Error detected within library code:   inte 
grate: implementation incomplete (residue poly has multiple non-linear fac 
tors)
 
3.6.90.6 Sympy [F]

\[ \int \frac {1+x^3}{\left (1-x^4\right ) \sqrt [4]{1+x^4}} \, dx=- \int \left (- \frac {x}{x^{3} \sqrt [4]{x^{4} + 1} - x^{2} \sqrt [4]{x^{4} + 1} + x \sqrt [4]{x^{4} + 1} - \sqrt [4]{x^{4} + 1}}\right )\, dx - \int \frac {x^{2}}{x^{3} \sqrt [4]{x^{4} + 1} - x^{2} \sqrt [4]{x^{4} + 1} + x \sqrt [4]{x^{4} + 1} - \sqrt [4]{x^{4} + 1}}\, dx - \int \frac {1}{x^{3} \sqrt [4]{x^{4} + 1} - x^{2} \sqrt [4]{x^{4} + 1} + x \sqrt [4]{x^{4} + 1} - \sqrt [4]{x^{4} + 1}}\, dx \]

input
integrate((x**3+1)/(-x**4+1)/(x**4+1)**(1/4),x)
 
output
-Integral(-x/(x**3*(x**4 + 1)**(1/4) - x**2*(x**4 + 1)**(1/4) + x*(x**4 + 
1)**(1/4) - (x**4 + 1)**(1/4)), x) - Integral(x**2/(x**3*(x**4 + 1)**(1/4) 
 - x**2*(x**4 + 1)**(1/4) + x*(x**4 + 1)**(1/4) - (x**4 + 1)**(1/4)), x) - 
 Integral(1/(x**3*(x**4 + 1)**(1/4) - x**2*(x**4 + 1)**(1/4) + x*(x**4 + 1 
)**(1/4) - (x**4 + 1)**(1/4)), x)
 
3.6.90.7 Maxima [F]

\[ \int \frac {1+x^3}{\left (1-x^4\right ) \sqrt [4]{1+x^4}} \, dx=\int { -\frac {x^{3} + 1}{{\left (x^{4} + 1\right )}^{\frac {1}{4}} {\left (x^{4} - 1\right )}} \,d x } \]

input
integrate((x^3+1)/(-x^4+1)/(x^4+1)^(1/4),x, algorithm="maxima")
 
output
-integrate((x^3 + 1)/((x^4 + 1)^(1/4)*(x^4 - 1)), x)
 
3.6.90.8 Giac [F]

\[ \int \frac {1+x^3}{\left (1-x^4\right ) \sqrt [4]{1+x^4}} \, dx=\int { -\frac {x^{3} + 1}{{\left (x^{4} + 1\right )}^{\frac {1}{4}} {\left (x^{4} - 1\right )}} \,d x } \]

input
integrate((x^3+1)/(-x^4+1)/(x^4+1)^(1/4),x, algorithm="giac")
 
output
integrate(-(x^3 + 1)/((x^4 + 1)^(1/4)*(x^4 - 1)), x)
 
3.6.90.9 Mupad [F(-1)]

Timed out. \[ \int \frac {1+x^3}{\left (1-x^4\right ) \sqrt [4]{1+x^4}} \, dx=\int -\frac {x^3+1}{\left (x^4-1\right )\,{\left (x^4+1\right )}^{1/4}} \,d x \]

input
int(-(x^3 + 1)/((x^4 - 1)*(x^4 + 1)^(1/4)),x)
 
output
int(-(x^3 + 1)/((x^4 - 1)*(x^4 + 1)^(1/4)), x)